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Abstract

Typically, network monitoring is from a central point of view: problems only noticed by
small sets of end users may never be noticed centrally. End-to-end measurments can address
this problem, but in most implementations it is left to the network administrator to correlate
alarms and locate the problem. This paper explains my implementation of a tool, FaultFinder
to partially automate this process by combining network topology information with end-to-
end performance data on a campus network to locate network paths or nodes that seem to
be causing trouble.
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1 Overview

Typically, network monitoring is from a central point of view: problems only noticed by
small sets of end users may never be noticed centrally. End-to-end measurments can address
this problem, but in most implementations it is left to the network administrator to correlate
alarms and locate the problem. This paper explains my implementation of a tool, FaultFinder
to partially automate this process by combining network topology information with end-to-
end performance data on a campus network to locate network paths or nodes that seem to
be causing trouble.

2 Topology Information

Ideally, T would like to take advantage of the finest granularity of topology available: every
single physical device on the path, but often this will not be available because of the access
to the network that it requires. With this in consideration, FaultFinder was designed to be
flexible and work with any type of topology data collected varying from a layer 2 traceroute,
to a standard layer 3 traceroute, to higher level network diagrams. Currenly FaultFinder
relies on manual entry of topology into a database but any other tool could be used to
automate the insertion of topology information into the database because it is stored in an
easy to comprehend format.

Topology information is stored in the database in two tables: a table of points and of
links. The point table indicates if a node is an endpoint or not, and the link table lists the
direct connections from a node to another node. I also generate a table of path components
which lists any two nodes and all of the links that must be traversed to get from one to
another. The path component table is used to facilitate quicker calculations of path overlaps
and must be recomputed each time the topology changes.

The topology is accessed in three ways:

e Loading into a data structure by iterating through all of the nodes and edges which
lets FaultFinder use existing code to perform graph calculations and render images

e A database query enables FaultFinder to see which path components are in the paths
between pairs of nodes. (select from components where either start or end = one of
the endpoints, group by linkid, count, where count = # of pairs)

e A database query enables FaultFinder to see which pairs of endpoints have a path that
run through a given segment. (select from component where linkid = the link id)

3 Performance Information

FaultFinder is usable with any set of end to end measurements for a topology. Selected ex-
amples include latency data (collected with smokeping) and throughput data (collected with
iperf). This information is stored in a database table with a timestamp, the source and desti-
nation nodes, and the performance data. (An existing system, CPR (http://www.rnoc.gatech.edu/cpr/),
collects and stores this data.) The initial implementation of FaultFinder assumed a binary
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performance value of down or up, but the current implementation can deal with variation
from a threshold as long as the threshold can be quantized before using the tool.

4 Building the Performance Model

The initial implementation of FaultFinder used a rating system for each node and link that
compared the number of failed tests through that particular node or link with the worst case
number of failed tests on any node or link in the entire topology. This was used because it
did not require a failure threshold to be given to the tool, and the hope was that as bigger
problems were fixed, FaultFinder would compensate and start showing smaller and smaller
problems. This seemed to make sense but after some experimentation, I found this method
to mask all problems when failure rate was consistent across nodes and links experiencing
problems. It also would mask nodes and links experiencing a moderate failure rate when one
node or link had a very large or complete failure rate. It’s important to show all failures but
with an emphasis on larger problems, so this wasn’t acceptable.

The current implementation of FaultFinder instead uses a percent failure rate per node
and link. At the beginning of execution, the user provides a threshold for what should
be considered a failure. This threshold is compared to the percent failure test data in the
database, and a percent failure rate is calculated by dividing the number of tests above
the threshold by the total number of tests through that node or link. This gives a good
indication of links that are performing poorly and allows operators to tune the program to
a higher threshold as problems are resolved.

Currently under development, the borders around nodes and the width of links will be
scaled on a logarithmic scale by the number of tests running through the node or link. This
will allow a quick glance at the output of FaultFinder to see which important links are
experiencing problems.

5 Examples

5.1 Proof of concept on binary data on a fictional topology

A fictional topology was created with fictional performance data. In this example, 25 of the
256 performance tests fail and the rest succeed. The following graph was produced by the
initial implementation of FaultFinder indicating the poorly performing network links:
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The worst performing path components are shown by this list of ratings:

e 11 to 9 is 0.0606909430438842

e 10 to 9 is 0.0606909430438842

e 4 to 31is 0.120448179271709

e 9to4is 0.1531279178338

e 6 to 20 is 0.209150326797386

e 3 to 6 is 0.26984126984127

e 20 to 28 is 0.583566760037348

5.2 TCP throughput on the Georgia Tech campus network

This grah represents TCP throughput performance measurements (collected with iperf) from
the CPR monitoring mesh of 80+ machines. The current implementation of FaultFinder was
used with a threshold of 80Mbps was used to indicate success. The graph points out that
there is a major performance problem with the Lyman router and the CPR monitoring node
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in the King building. The King building could be a machine or link failure, it’s tough to
say (It ended up being a 10mbps switch in that building!). As for the Lyman router, severe
performance problems are indicated for all of the links in the direction from campus to the
monitoring nodes attached to it. This indicates that something is probably going wrong with
the router. After using this tool to find this problem, I reported it and a software update to
the Lyman router resolved this problem as indicated in the third graph below.

cpr-lawn804

Before the creation of this tool, I manually ordered rows and columns in a table based
on default gateway for machines and generated the following graph, but as you can see it is
a bit hard to infer some of the details. (The original had from/to/throughput information
with a mouse hover. It was good for a general overview of the network, but hard to narrow
down problems)



After resolving the issue with the Lyman router, a rerun of iperf on the CPR monitoring
mesh indicated that something wrong with a pair of hosts and their throughput to all other
hosts. These two machines were virtual machines on the same piece of physical hardware
which apparently couldn’t handle the IO throuput. I placed each of these machines on their
own hardware and after another run of iperf, the network was finally all green. Increasing
the performance threshold to 90Mbps also indicated no failures, and given the nature of the
tests, any value over 90Mbps on a campus network is considered acceptable throughput.



5.3 Reachability on the ATLANTIC network

The ATLANTIC network is a fiber network that, among other things, connects Imperial
College in London to Oak Ridge National Labs through Georgia Tech so that scientists at
Imperial College can use a microscope at ORNL. This graph represents reachability data
collected with ping on this network set on the Layer 2 topology. Given the small number of
endpoints (only 4!) and the great overlap between them, this tools is not currently as useful
for this network, but as more data is collected on this network using different measurement
techniques, FaultFinder may help to locate problems.
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6 Related Works

There is not much other work that has been done in this specific area, but there are a few
examples. The first of these is Duffield’s IMC 2003 Paper: “Simple Network Tomography.”
In the paper, Duffield builds an algorithm that combines end to end measurements that
either pass or fail with a network topology to produce sets of link failures that could explain
the current failure conditions on the network. He shows that the smallest set of link failures
is usualy the most accurate.

To contrast Duffield’s approach, I am using a flexibile performance metric to indicate
a failure (ex: less than 80Mbps throughput on a switched 100Mbps network) of a test.
Currently this is chosen manually by the operator and is constant across all links, but in the
future FaultFinder will support separate performance metrics for each pair of nodes running
tests based on past test history that was considered successful. Our approach also doesn’t
attempt to narrow down results to the simplest explanation: I instead determine a percent
failure rate for each link segment and indicate those with the highest percent failure rate as
the best candidates for further investigation. These approaches are similar, but I feel that
my method (and it’s future directions) may be more useful for situations where performance
problems are not as simple as link failures and are indicated by past performance instead of
a strict criteria.

7 Future Directions

There are many future directions for this work on FaultFinder and I intend to continue
development of this tool for the foreseeable future. Here is a partial list of ideas to be



further explored:
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e Test FaultFinder on more types of data collected with the CPR monitoring mesh on the

campus network to see if I can find any more subtle problems that may have otherwise
gone unnoticed. (Smokeping, pathload, etc)

Utilize a Layer 2 map of the campus topology to achieve a much higher granularity in
the paths. Some components that appear to be different at Layer 3 are actually on the
same hardware so though they may only seem to be partially failing independently,
the combined failure rate may be substantially larger.

Investigate using some of the graphing tools from CAIDA (http://www.caida.org/tools/)
which may allow for a much more comprehensible graph as the topologies investigated
grow more complex.

Create a method to automatically scale the output graph based on failures. Endpoints
with no failures between them would appear to be directly connected to eachother
and as problems are detected, the graph would show more and more details up to
the level where it could single out a problem. (Example: in the ATLANTIC topology
above with the existing topology, a single failure between hank2 and cpr-atlantic would
result in a graph showing a problem between hank2 and ORNL Ciena DWDM), partial
problems from ORNL Ciena DWDM to cpr-atlantic, and success from BLANK and
cpr-slr to ORNL Ciena DWDM.)

Conclusions

Combining topology data with performance data can provide good indications of likely points
of failure in the network. A visulization of this information like the one generated by Fault-
Finder is useful in allowing likely points of failure to be located with a quick glance. This
graph and the average failure rates for points in the topology enable operators to only need
to run manual tests to confirm likely problems and not to do the initial location which should
save large ammounts of time and shorten the time to resolution for performance problems.

Advantages aside, there are several limitations of this approach that all require further

investigation.

e Current display of one type of test on a graph (iperf for example) indicated several

problems but once fixed, everything became green and stayed that way. Multiple
performance metrics need to be aggregated together so that one graph can provide a
comprehensive indication of problems.

It is currently difficult to tune FaultFinder to prevent false positives due to generaliza-
tion of what indicates a failure of a test. Future work should prevent operators from
having to manually scale thresholds to try and focus on problems.

Successful usage of FaultFinder requires a knowledge of the topology and good coverage
of monitoring nodes. There isn’t really a way around this and thus this tool will not
be very useful for those without either.



e Multiple paths possible for tests would make results a lot less accurate. Because a
shortest path algorithm is used that considers all the links to have the same weight,
paths chosen by FaultFinder would likely be somewhat inconsistent with the actual
routes that the packets took. The ideal solution to this is to store routing information
in the database as well and use it to generate the actual graph, but this substantially
complicates the code and requires infrastructure to gather the routing information.
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